Lecture 2 PULMONARY VENTILATION

Objectives

- ❀ The muscles used during ventilation
- ✤ The mechanism of ventilation of the lung
- The types of respiratory pressures
- ❀ The elastic recoil of the lung (surface tension)
- The chemical composition, functions and factors affecting surfactant production
- ❀ Types of respiratory dead space
- ❀ Significance of ADS

Mechanism of normal quite breathing (eupnoea)

- Respiratory cycle (inspiration, expiration, pause)
- Respiratory rate 12-16/min
- Expiration 2 times inspiration

Normal quite breathing

V V Exercise

- Pause disappear
- Expiration = inspiration
- ↑ Rate
- $\uparrow RR \rightarrow$ tachypnea, e.g., exercise, fever.
- Arrest of respiration \rightarrow apnea, e.g, deglutition apnea
- \odot Difficulty in breathing \rightarrow dyspnea, e.g, bronchial asthma.

Muscles of respiration

• Normal inspiration

1) Diaphragm

- Descend (contraction) about 1.5 cm (quiet inspiration), 7cm(forced inspiration) →↑ vertical diameter
- 75% of air entry
- Diaphragmatic paralysis (C3,4&5) \rightarrow respiration is seriously impaired.

- Diaphragm consists of costal portion, crural portion and central tendon
 - The costal and crural fibers are innervated by different parts of the phrenic nerves and can contract separately
 - Vomiting → ↑ intra-abdominal pressure by contraction of costal fibers but the crural fibers remain relaxed allowing materials to pass from the stomach into the esophagus.

2) External intercostal muscles ⇒ (run obliquely downward and forward from rib to rib)

- Eversion of ribs →↑ antero-posterior diameter
- Elevation of ribs $\rightarrow \uparrow$ transverse diameter
- Forced inspiration

Accessory inspiratory muscles

- Sternocleidomastoid → elevates sternum
- Scalene \rightarrow elevates 1ST 2 ribs
- Serratus anterior \rightarrow elevates 1st 5 ribs

Muscles of expiration Expiration is passive

- Normal expiration (passive)
 No muscle contraction
- Expiratory muscles used only with
 - Forced expiration (exercise)
 - Diseases (obstructive lung diseases)
 - 1) Internal intercostal muscles (pass obliquely downward and postariorly from rib to rib)
 - downward and posteriorly from rib to rib)
 - Inversion and depression of ribs

2) Abdominal muscles

 Pulling the rib cage downward and inward and increasing the intra-abdominal pressure

Relaxation of inspiratory muscles Lungs retract due to elastic recoil Inside volume decrease Alveolar pressure >atmospheric pressure Air driven out (expiration)

Pressure changes during respiratory cycle

1) Intra alveolar (intrapulmonary) pressure

- Definition: pressure inside the alveoli
 - At the end of normal expiration the intrapul. pressure = atmospheric pressure = zero.
- Values:
 - Quite inspiration → negative
 - ∽ Mid inspiration = −1 mmHg
 - \bigcirc End of inspiration \rightarrow zero
 - \bigcirc Forced inspiration (Muller's maneuver e.g sucking fluid with straw) \rightarrow (–80 mmHg)
 - Quite expiration \rightarrow positive
 - Mid expiration = +1 mmHg
 - \bigcirc End of expiration \rightarrow zero
 - \bigcirc Forced expiration (Valsalva's maneuver e.g. straining) \rightarrow (+100 mm Hg)

2) Intrapleural (intrathoracic) pressure

- **Definition:** pressure in pleural cavity
- Value: in normal breathing is always negative
 - Atmospheric pressure which is equal to 760 mmHg is taken as zero atmosphere

• Cause:

- Continuous tendency of lung to recoil inwards (elasticity and surface tension) and chest wall to expand (elasticity) → These two forces are equal in intensity and act in opposite directions against a closed space → negative pressure
- Rapid absorption rate of pleural fluid by pulmonary capillaries and also by the lymphatics

• Variation in intrapleural pressure (values)

- 1) During different phases of respiration
 - Inspiration (more negative)
 - ∽ In quite inspiration (–6 mmHg)
 - \bigcirc In forced inspiration(–12 to –18 mm Hg)
 - ∽ In Muller's maneuver (– 40 mm Hg)
 - During expiration (less negative)
 - Towards the end of expiration (-2.5 mm Hg)
 - \bigcirc Forced expiration \rightarrow positive pressure
 - ∽ In Valsalva's maneuver (+40 mm Hg)

2) Regional variation (effect of gravity)

- Near the apex : (-6 mm Hg)
- In the middle part of the lung (-2.5mmHg)
- Near the base it is about (-1 mm Hg)

• Measurement

 Indirect (measurement of pressure inside esophagus by esophageal balloon)

● Importance of negative intrapleural pressure

- Prevent collapse of alveoli (lung)
- Aids venous and lymphatic return (against gravity)
- Clinically negativity is an index of lung elasticity
- Effects of positive intrapleural pressure
 - Normally (Valsalva's maneuver)
 - Pathological (pneumothorax)
 Lung recoils (collapse) and chest wall expands to their relaxed volumes.
 - Trachea, mediastinum shift toward healthy side.
 - Decreased venous and lymphatic return

Transpulmonary (transmural pressure)

- **Definition:** pressure difference across the lung
 - Intrapulmonary pressure intrapleural pressure
 - ↑Transpulmonary pr → greater stretching of lung →↑ lung volume (↑during inspiration &↓ during expiration)
- Values: (at the end of normal expiration)
 - At the apex of the lung: 0 (-6) = 6 mmHg
 - In the middle of the lung: 0- (-2.5) = 2.5 mmHg
 - At the base of the lung: 0 (-1) = 1 mmHg
 - Since the transmural pressure is less at the base of the lung:
 - ∽ The lung is less expanded at the base
 - This pressure further decreases at the end of forced expiration causing the airways to close at the base